Lecture 10
Plan:1) Discuss pset/
BFS pisc remarchs;
\rightarrow Caratheodory's Theorem.

* 2) Total unimodularity
\#3) b) Srow if G factor critical, edmonds terminates at single vertex.
Strategn: slow ODD at exdif(a) of Edmonds is emptor b/e Efinal is factor critical.

Easier: $O D D$ is $T B$ minimize for Goriginal ! From class.
$\Rightarrow O D D=\varnothing$ from part (a).
\Rightarrow implies G final is singleton, because Goriginal is connected.
Quiz see Canvas announcement.
2) format: $2 \mathrm{hrs}, 22 \mathrm{hr}$ window for starting it, window starts H:00 am Thurs Apr 1.
2) open note, no collaborators, no internet a art from Canvas.
3) is practice quiz already, is assignment in canvas.
\#questions 3-4.
No lecture Apr.

$$
\begin{aligned}
& \# 5) \operatorname{cose}(P)=\operatorname{sos} \cup\{x: 3 \lambda \text { s.t. } \\
& \lambda x \in P\} . \\
& =\{0\} \cup\left\{x \cdot 3 \lambda^{0} \text { s.t. } A \lambda x \leq b\right\} \\
& =\{0\rangle \cup\left\{x: \exists \lambda^{2} \text { s.t. } A x \leq \lambda b\right\} .
\end{aligned}
$$

cone conld be

$$
\{(x, y): x>0\}
$$

$$
U\{0\} .
$$

$$
P=\left\{x: \exists \lambda_{\text {s.t. }}^{0} . A x \leq \lambda b\right\}
$$

as projection of $\tilde{\phi}$

$$
\begin{aligned}
& \tilde{P}=\{(x, \lambda): \underbrace{A x-\lambda b}_{d}, \lambda^{0}\} \\
& p=\tilde{P}_{n+1} \quad \tilde{A}=\left[\begin{array}{c|c}
x & \lambda \\
A & -b \\
\hline 0 & -1
\end{array}\right] \\
& \widetilde{P}=\{(x, \lambda): \widetilde{A}(x, \lambda) \leqslant 0
\end{aligned}
$$

e. 5 can combine $I>$ and final inequality $-\lambda<0$.

$$
\begin{aligned}
& a_{i}^{+} x-b_{i} \lambda \leq 0 \quad b_{i}<0 \\
& +\left(-b_{i}\right)[-\lambda<0] \\
\rightarrow & a_{i}^{+} x<0 \quad \forall i: b_{i}<0
\end{aligned}
$$

Mise remarks $\operatorname{aff}(x)$ $\operatorname{conv}(x)$ cone (x)

$$
\begin{aligned}
& \operatorname{aff}(x)=\left\{x_{i} \lambda_{i}: \sum \lambda_{i}=1\right. \\
& \operatorname{cone}(f)=\sum x_{i} \lambda_{1},: \lambda_{i} \geqslant 0 \\
& \text { conv }(x)=\sum x_{i} \lambda_{i}: \lambda_{i} \geqslant 0, \sum \lambda_{i}=1 .
\end{aligned}
$$

is $\operatorname{conv}(x)=\operatorname{cone}(x) \cap \operatorname{aff}(x)$?
not true

affine hull all of \mathbb{R}^{2}

conic hull
affine 0 conic $=$ conic!
why not contradiction??
Miscremark \#2
$P=\{x a x \leq b\}$ consider projection P_{n}

Know how to write $P_{n}=\{x: \tilde{A} x \leq \tilde{b}\}$ from Fourier-Motzkin.
\qquad what about if

$$
\begin{aligned}
& P=\operatorname{conv}\left(x_{1}, \ldots x_{t}\right) \\
& P_{n}=\operatorname{conv}\left(\left(x_{1}\right)_{n}, \ldots\left(x_{t}\right)_{n}\right)
\end{aligned}
$$

get rid of final coordinate.
vertices of $P_{n} \subseteq\left\{\left(x_{1}\right)_{n 1 \ldots} \ldots\right.$

$$
\left.\ldots(x t)_{n}\right] .
$$

$$
P=\{x: A x \leqslant b\} E x
$$

addiy Sleck:

$$
\begin{aligned}
& P=\{x: A x \leqslant b, x \geqslant 0\} \\
& Q=\{(x, s): A x+I s=b, x \geqslant 0, \\
& 5 \geqslant 07 \text {. }
\end{aligned}
$$

P is projection of Q.
Refresher: BFS

$$
P=\{x: A x \theta b, x \geq 0\}
$$

Recall: vertices of P are basic fasible - 0.t......
sotwnurns, it.
feasible solus obtained as follows:

- Remove redundant sows from A (so that $\operatorname{rank} A=m$)

- Choose n columns B of A that form a basis for \mathbb{R}^{m}

- Solve $A_{\beta} x_{\beta}=\ddot{b}$, set

$$
\begin{aligned}
& \text { Solve } A_{B} x_{B}=b, \text {, propel } \\
& \text { set } \\
& \left.\qquad x^{*}=\left[\begin{array}{c}
\frac{0}{x_{B}} \\
\text { we }
\end{array}\right]\right\} B \quad \text { in le cor } 8 .
\end{aligned}
$$

if $x^{*} \in P$, ie x^{*} feasible, x^{*} is bfs.
All vertices of P are $b f s$.
E.9: in \mathbb{R}^{3}

$$
\left.\left.\begin{array}{l}
p=\left\{(x, y, z) \in \mathbb{R}^{3}: \begin{array}{l}
x \geqslant 0 \\
y \geqslant 0, ~ \\
1
\end{array} 1\right. \\
1 \\
1
\end{array}-10\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right\}
$$

3 potential bIs:

1) $z=0,\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)\binom{x}{y}=\binom{1}{0}$
$\Rightarrow(x, y, z)=\left(\frac{1}{2}, \frac{1}{2}, 0\right)$. feasible,

$$
\begin{aligned}
& \text { 2) } y=0,\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)\binom{x}{z}=\binom{1}{0} \\
& \Rightarrow(x, y, z)=(0,0,1) \quad / \text { feasible }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 3) } x=0,\left(\begin{array}{cc}
1 & 1 \\
-1 & 0
\end{array}\right)\binom{y}{z}=\binom{1}{0} \\
& \Rightarrow(x, y, z)=(0,0,1) \quad \text { feasibh. }
\end{aligned}
$$

Another example:

Caratheodory's
Theorem a polytope
Every point in $P \subseteq \mathbb{R}^{n}$ can be written as a convex combination of $\leq n+1$ vertices of P.
holds for amy bounded convex cum closed set vertices $n \rightarrow$ extreme $p+s$.

Proof Let $x \in P, P=$| $\operatorname{con}\left(v_{1}\right)$ |
| :---: |
| $\left.-v_{t}\right)$ |

- consider ways to write X as comer combo of vertices $v_{1} \ldots v_{t}$ of P.
- Assume a (fine hall of vertices of P is \mathbb{R}^{n} (else could translate, rotate P tope $\subseteq \mathbb{R}^{n^{\prime}}$ for $n^{\prime}<n$..

$$
\left.\begin{array}{l}
Q=\left\{k: \quad \varepsilon \lambda_{i} v_{i}=x\right. \\
\varepsilon \lambda_{i}=1
\end{array}\right\}
$$

$$
\text { of }\left(v_{1} \ldots v_{t}\right)=\mathbb{R}^{n} \Leftrightarrow \operatorname{rank} A=n+1
$$

(no redundant rows.).
Can use λ^{*} where λ^{*} 's vertex;
So can take $\lambda^{*}=$ BF?
λ^{*} has all but $n+1$
coordinates $=0$!
Affine hull: X of (X) smallest affine space containing it affine spaces are translations of subspaces.

Total $\frac{k}{k}$ unimodularity

- Consider discrete set $X \subseteq \mathbb{R}^{n}$.
E.g. $\cdot X \in \mathbb{R}^{n \times n}$ incilence vectons of matding's
- $x \in \mathbb{R}^{\text {axh }}$ incidure vecters of indeperdeat (a.ka. stable sets) in graph.
- To optimize linear functións over x, enoulh to do so
over $\operatorname{conv}(\bar{x})$
- For this, want simple polyhedral description

$$
\operatorname{coms}(x)=\{x: A x \leqslant b\} .
$$

Given proposed A, b, how to prove $\operatorname{conv}(x)=p$?

- Easy toshow con $(x) \subseteq P$; just check $A x \leq b$ for all $x \in X$.
- How absent $P \subseteq \operatorname{conv}(X)$?

Harden!

- One way is Algorithmically: Enough to show $\forall c \in \mathbb{R}^{n}$

$$
\max _{x \in X} C^{\top} X=
$$

\leftarrow primal
By weak duality, enough to exhibit dual feasible y and $x \in X$ with
eg what we did for min-weight perfect matching. (MWPM).

- Today, another way: show extreme points of P integral.
Eg. helps when you know

$$
x=\left\{x^{\in} \mathbb{Z}^{m}: x \in P\right\}
$$

ie.

$$
x=\{\text { feasible set for }\}
$$

some integer program.\}

$$
\begin{aligned}
& P \subseteq \operatorname{conv}(X) \text {. } \\
& P=\text { conv }(v e r t i c e s \text { of } \\
& P) \\
& \text { if vertices of } \\
& P \text { in } z^{m} \text {, then } \\
& \text { they are in } X \\
& \text { Integer program }
\end{aligned}
$$

Integer program

$$
\begin{aligned}
& c^{\top} x \\
& x \in P \\
& x \in \mathbb{Z}^{m}
\end{aligned}
$$

Inthiscase: LP. $=I . P$
every vertex of
P is integral

$$
\Leftrightarrow P=\operatorname{conv}(x)
$$

if this happens, say P integral. often not the

Method of showing this:

$$
\begin{aligned}
& x+y=1 \\
& x+z=1
\end{aligned}
$$

Total Unimodularity
This is true when matrix A
is very special.
Def: matrix A is totally unimodular (TK) if every square submatrix has determinant $+1,-1,0$

$$
\text { egg. }\left[\begin{array}{cc}
-1 & -1 \\
1 & 0 \\
0 & 1
\end{array}\right], \text { not }\left[\begin{array}{cc}
{[21} & 0 \\
1 & 1 \\
1 & -1
\end{array}\right]
$$

Important because:

Theorem: (Tu theorem)
Suppose A totally unimodular.
Then \forall integral b,

$$
P=\{x: A x \leq b, x \geqslant 0\}
$$

is integral.
Pre-proof remarks:

- Same proof shows thu also holds for

$$
P=\{x: A x \geqslant b, x \geqslant 0\}
$$

or

$$
P=\{x: A x=b, x \geqslant 0\} .
$$

- Converse: if $P=\{x \cdot A x \leqslant b ; x \geqslant 0\}$ is integral for all integral b then A is TU.
(but converse not the fo $\left\{x: A_{x}=b, x \geqslant>\right\}$).
Proof : First, reduce to equality by adding slack:
let

$$
Q=\{(x, s): A x+I s=6, x \geqslant 0, s \geqslant 0\}
$$

Ex: Q integral $\Leftrightarrow P$ integral.
Fact: $\tilde{A}=[A \mid I] T U$ $\Leftrightarrow A$ TU.
egg.

$$
\operatorname{det}\left(\left.\begin{array}{lll}
a & b & b^{0} \\
c & d \\
e & f & 1
\end{array} \right\rvert\,=\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) .\right.
$$

In general: submatrix of \tilde{A} is cols of $A+$ cols of I; expand down cols I. to get determinant of square A submatrix.
Thus: Forget about \tilde{A}, assume

$$
P=\{x: A x=b, x \geqslant 0\} .
$$

where A is TU.
Recall: vertices are BFS!

Claim: BFS ${ }^{-1}$ integral.
why? $5^{\text {has full rank }}$ remove

$$
\begin{array}{ll}
\text { ? } & A_{B} x_{B}=b \\
\Rightarrow & X_{B}=A_{B}^{-1} b
\end{array}
$$

But

$$
\left.X_{B}=\frac{\prod\left[A^{\text {adj }}\right.}{\operatorname{det}\left(A_{B}\right)}\right) b=b
$$

where A_{B} adj is $[H]$ adjugate matrix entries are subdeterments.

- in particular $A_{B}^{\text {adj }} \frac{\text { integral! }}{}$
-b, $A_{B}^{\text {adj integral, }}\left(\operatorname{det} A_{B} \mid=1\right.$
$\Rightarrow x_{B}$ integral

$$
\begin{aligned}
& B \text { integrartex } \\
& \Rightarrow \text { every wintegral. } \\
& \text { is }
\end{aligned}
$$

Example bipartite matching.
polytope $P \leq \mathbb{R}^{n x n}$ of "fractional matching" we used for min-weight-perfect - matching:

Kecall:
Let (U, V) be bipartition.

$$
\begin{array}{r}
P=\left\{x \in \mathbb{U}^{n \times n} \sum_{j} x_{i j}=\forall i \in U\right. \\
\sum_{i} x_{i j}=1 \forall j \in V \\
\left.x_{i j} \geqslant 0 \quad \forall i \in U, j \in V\right\} \\
:=\{x \cdot A x=b, x \geqslant 0\} .
\end{array}
$$

Theorem: The matrix A 1.-1111. cerbmodular.
is romany our-.
(is rotary our
what we
proved in lecture 2!
).
Cor: MWPM $=\min \left\{C^{\top} x: X \in P\right\}$.
Proof: What's A look like?
A^{\top} is incidence matrix of complete bipartite graph.
i.e.
$A=$

- To show A is TU, considu square submatrix M \& look at cases:

1) if M has O roup col,
\square
2) If M has row/ col ω / only one 1,
3) M has $\geqslant 2$ nomyero entries per row \& col.

$$
\Rightarrow
$$

M \square

$$
\xi=u_{0}
$$

$$
\}:=v_{0}
$$

$$
\mathbb{I}_{u_{0}}=[] \begin{array}{ll}
u_{0} & \left.\mathbb{1}_{v_{0}}=[] \begin{array}{l}
u_{0} \\
v_{0}
\end{array}\right]
\end{array}
$$

Cod up rows of M in U_{0}, get \mathbb{I}^{τ}).
similarly

\Rightarrow two distinct solus. to \square ; rows not linindep.

$$
\Rightarrow
$$

P is integral if all its vertices are integral.

$$
\begin{aligned}
& \mathbb{\$} \\
& P=\operatorname{conv}\binom{\text { integer }}{\text { points one }}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\begin{array}{c}
x \in r \\
\\
x \in \mathbb{R}^{n} \\
\text { for all } c \in \mathbb{R}^{n} \\
\text { (maximizers same.). }
\end{array} \right\rvert\, \\
& \begin{array}{l}
x+y=1 \\
x+z=1 \\
y+z=1 \\
\text { IP infeasible }
\end{array}
\end{aligned}
$$

P notintegral, IP infearible,

$$
L P C^{+}\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)
$$

